3.36 \(\int \frac{\csc ^3(a+b x)}{c+d x} \, dx\)

Optimal. Leaf size=18 \[ \text{Unintegrable}\left (\frac{\csc ^3(a+b x)}{c+d x},x\right ) \]

[Out]

Unintegrable[Csc[a + b*x]^3/(c + d*x), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0390921, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{\csc ^3(a+b x)}{c+d x} \, dx \]

Verification is Not applicable to the result.

[In]

Int[Csc[a + b*x]^3/(c + d*x),x]

[Out]

Defer[Int][Csc[a + b*x]^3/(c + d*x), x]

Rubi steps

\begin{align*} \int \frac{\csc ^3(a+b x)}{c+d x} \, dx &=\int \frac{\csc ^3(a+b x)}{c+d x} \, dx\\ \end{align*}

Mathematica [A]  time = 31.3571, size = 0, normalized size = 0. \[ \int \frac{\csc ^3(a+b x)}{c+d x} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Csc[a + b*x]^3/(c + d*x),x]

[Out]

Integrate[Csc[a + b*x]^3/(c + d*x), x]

________________________________________________________________________________________

Maple [A]  time = 2.163, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( \csc \left ( bx+a \right ) \right ) ^{3}}{dx+c}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)^3/(d*x+c),x)

[Out]

int(csc(b*x+a)^3/(d*x+c),x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3/(d*x+c),x, algorithm="maxima")

[Out]

(((b*d*x + b*c)*cos(3*b*x + 3*a) + (b*d*x + b*c)*cos(b*x + a) - d*sin(3*b*x + 3*a) + d*sin(b*x + a))*cos(4*b*x
 + 4*a) + (b*d*x + b*c - 2*(b*d*x + b*c)*cos(2*b*x + 2*a) - 2*d*sin(2*b*x + 2*a))*cos(3*b*x + 3*a) - 2*((b*d*x
 + b*c)*cos(b*x + a) + d*sin(b*x + a))*cos(2*b*x + 2*a) + (b*d*x + b*c)*cos(b*x + a) + (b^2*d^2*x^2 + 2*b^2*c*
d*x + b^2*c^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(4*b*x + 4*a)^2 + 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*
c^2)*cos(2*b*x + 2*a)^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(4*b*x + 4*a)^2 - 4*(b^2*d^2*x^2 + 2*b^2*c*
d*x + b^2*c^2)*sin(4*b*x + 4*a)*sin(2*b*x + 2*a) + 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(2*b*x + 2*a)^2
+ 2*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 - 2*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a))*cos(4*b*x
 + 4*a) - 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a))*integrate(1/2*(b^2*d^2*x^2 + 2*b^2*c*d*x +
 b^2*c^2 + 2*d^2)*sin(b*x + a)/(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3 + (b^2*d^3*x^3 + 3*b^2
*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cos(b*x + a)^2 + (b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^
3)*sin(b*x + a)^2 + 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cos(b*x + a)), x) + (b^2*d^2*x
^2 + 2*b^2*c*d*x + b^2*c^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(4*b*x + 4*a)^2 + 4*(b^2*d^2*x^2 + 2*b^2
*c*d*x + b^2*c^2)*cos(2*b*x + 2*a)^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(4*b*x + 4*a)^2 - 4*(b^2*d^2*x
^2 + 2*b^2*c*d*x + b^2*c^2)*sin(4*b*x + 4*a)*sin(2*b*x + 2*a) + 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(2*
b*x + 2*a)^2 + 2*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 - 2*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*
a))*cos(4*b*x + 4*a) - 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a))*integrate(1/2*(b^2*d^2*x^2 +
2*b^2*c*d*x + b^2*c^2 + 2*d^2)*sin(b*x + a)/(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3 + (b^2*d^
3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cos(b*x + a)^2 + (b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2
*d*x + b^2*c^3)*sin(b*x + a)^2 - 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + 3*b^2*c^2*d*x + b^2*c^3)*cos(b*x + a)), x)
 + (d*cos(3*b*x + 3*a) - d*cos(b*x + a) + (b*d*x + b*c)*sin(3*b*x + 3*a) + (b*d*x + b*c)*sin(b*x + a))*sin(4*b
*x + 4*a) + (2*d*cos(2*b*x + 2*a) - 2*(b*d*x + b*c)*sin(2*b*x + 2*a) - d)*sin(3*b*x + 3*a) + 2*(d*cos(b*x + a)
 - (b*d*x + b*c)*sin(b*x + a))*sin(2*b*x + 2*a) + d*sin(b*x + a))/(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 + (b^2*
d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(4*b*x + 4*a)^2 + 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a)
^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(4*b*x + 4*a)^2 - 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(4*
b*x + 4*a)*sin(2*b*x + 2*a) + 4*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*sin(2*b*x + 2*a)^2 + 2*(b^2*d^2*x^2 + 2*
b^2*c*d*x + b^2*c^2 - 2*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a))*cos(4*b*x + 4*a) - 4*(b^2*d^2*
x^2 + 2*b^2*c*d*x + b^2*c^2)*cos(2*b*x + 2*a))

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\csc \left (b x + a\right )^{3}}{d x + c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3/(d*x+c),x, algorithm="fricas")

[Out]

integral(csc(b*x + a)^3/(d*x + c), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc ^{3}{\left (a + b x \right )}}{c + d x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)**3/(d*x+c),x)

[Out]

Integral(csc(a + b*x)**3/(c + d*x), x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc \left (b x + a\right )^{3}}{d x + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^3/(d*x+c),x, algorithm="giac")

[Out]

integrate(csc(b*x + a)^3/(d*x + c), x)